Illinois Data Bank
Displaying 1 - 25 of 850 in total
Subject Area
Funder
Publication Year
License
Illinois Data Bank Dataset Search Results

Dataset Search Results

published: 2025-09-25
 
Dataset for "Using Stochastic Block Models for Community Detection". This contains synthetic networks with ground-truth community structure generated using synthetic network generators (specifically, ABCD+o) based on real-world networks and computed clusterings on these real-world networks. Note: * networks.zip contains the synthetic networks
published: 2025-09-25
 
This repository provides the data and code used to reproduce key plots from the manuscript and to extend discussions that were only briefly covered therein. All MATLAB scripts were developed and tested in MATLAB R2024a. All Python scripts were developed and tested in Python 3.11.2. * <b> NOTE:</b> New in this V3: 1. 2 new MATLAB files (ChiralPointGroups.m and THz_current_estimation.m), ChiralPointGroups.pdf (a compiled version of ChiralPointGroups.m) and theoretical model code (theoretical_model.zip) are added. More information can be found in the readme. 2. Updated and renamed "publication_data.zip" (in V2) to "data_and_analysis.zip" 3. Change License from CC BY to "Other license". Licensing Terms: Data (all .mat files) is under CC BY and Code is released under MIT license. Therefore, V3 is bound to this new license. V2 is still under CC BY. <b>→ Data and analysis code (data_and_analysis.zip):</b> The dataset is organized into five subfolders. Each subfolder corresponds to a unique combination of experimental conditions, including: • Magnetic field orientation (B ∥ c or B ⟂ c) • Scan parameter (magnetic field or temperature) • Pump laser polarization (linear s, linear p, or circular) • Detection polarization (linear s) Each folder contains: • The raw time-domain data files (.mat) • Oscillator parameters extracted via linear prediction algorithm (.mat) • MATLAB scripts (.m) that generate plots of the raw data, processed fits, and amplified modes. Each script should be run within its corresponding folder to ensure proper loading of the associated data files. Folder summary: 1. B_parallel_c_linear_spump_sprobe_field: B ∥ c, s-polarized pump, s-polarized THz detection, magnetic field dependence 2. B_parallel_c_linear_spump_sprobe_temperature: B ∥ c, s-polarized pump, s-polarized THz detection, temperature dependence 3. B_perp_c_linear_spump_sprobe_field: B ⟂ c, s-polarized pump, s-polarized THz detection, magnetic field dependence 4. B_perp_c_linear_spump_sprobe_temperature: B ⟂ c, s-polarized pump, s-polarized THz detection, temperature dependence 5. B_parallel_c_LCPRCP_pump_sprobe_field: B ∥ c, circularly polarized pump (LCP & RCP), s-polarized THz detection, magnetic field dependence <b>→Theoretical model code (theoretical_model.zip):</b> The Python script depends on packages “numpy” and “matplotlib”. The script generates a plot of the dispersion relations of the theoretical model introduced in the Main Text. More precisely, it plots the real (red) and imaginary (blue) parts of the frequency (ω) as a function of wavenumber (k) as obtained by solving the characteristic equation, equation (6) of the Supplemental Information, with σ_E and σ_Μ given respectively by equations (3) and (2) of the Main Text. All branches of the dispersion relations are plotted simultaneously. All model parameters are adjustable. The included Mathematica notebook (printout also provided in .pdf format) was used to obtain symbolic expressions for the coefficients of powers of ω appearing in the characteristic determinant. These coefficients were copied directly into the Python function detCoeffs(). <b>→ Standalone scripts (not in subfolders):</b> • ChiralPointGroups.m Outputs a table summarizing the 2D matrix representation of σ_Μ in the 11 enantiomorphic point groups. ChiralPointGroups.pdf is a compiled version of chiral point groups table, identical to the output of ChiralPointGroups.m. • THz_current_estimation.m Estimates the photoinduced THz current in tellurium under magnetic field. The script evaluates a phenomenological resonant contribution to the magnetoelectric coupling (with negligible dependence on NIR polarization), leading to excitation of s-polarized, B-antisymmetric mode S_odd at ~0.37 THz. These standalone scripts provide additional physical discussion and calculation detail that are intentionally streamlined or omitted from the published manuscript and its supplementary materials for clarity and space.
keywords: magneto-chiral instability; THz emission; THz spectroscopy; nonequilibrium states; emergent phenomena; Weyl semiconductor; tellurium; ultrafast spectrscopy; photoexcitation
published: 2025-09-25
 
Perennial crops have been the focus of bioenergy research and development for their sustainability benefits associated with high soil carbon (C) and reduced nitrogen (N) requirements. However, perennial crops mature over several years and their sustainability benefits can be negated through land reversion. A photoperiod‐sensitive energy sorghum (Sorghum bicolor) may provide an annual crop alternative more ecologically sustainable than maize (Zea mays) that can more easily integrate into crop rotations than perennials, such as miscanthus (Miscanthus × giganteus). This study presents an ecosystem‐scale comparison of C, N, water and energy fluxes from energy sorghum, maize and miscanthus during a typical growing season in the Midwest United States. Gross primary productivity (GPP) was highest for maize during the peak growing season at 21.83 g C m−2 day−1, followed by energy sorghum (17.04 g C m−2 day−1) and miscanthus (15.57 g C m−2 day−1). Maize also had the highest peak growing season evapotranspiration at 5.39 mm day−1, with energy sorghum and miscanthus at 3.81 and 3.61 mm day−1, respectively. Energy sorghum was the most efficient water user (WUE), while maize and miscanthus were comparatively similar (3.04, 1.75 and 1.89 g C mm−1 H2O, respectively). Maize albedo was lower than energy sorghum and miscanthus (0.19, 0.26 and 0.24, respectively), but energy sorghum had a Bowen ratio closer to maize than miscanthus (0.12, 0.13 and 0.21, respectively). Nitrous oxide (N2O) flux was higher from maize and energy sorghum (8.86 and 12.04 kg N ha−1, respectively) compared with miscanthus (0.51 kg N ha−1), indicative of their different agronomic management. These results are an important first look at how energy sorghum compares to maize and miscanthus grown in the Midwest United States. This quantitative assessment is a critical component for calibrating biogeochemical and ecological models used to forecast bioenergy crop growth, productivity and sustainability.
keywords: Sustainability;Field Data
published: 2025-09-24
 
2′-Fucosyllactose (2′-FL), a human milk oligosaccharide with confirmed benefits for infant health, is a promising infant formula ingredient. Although Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Bacillus subtilis have been engineered to produce 2′-FL, their titers and productivities need be improved for economic production. Glucose along with lactose have been used as substrates for producing 2′-FL, but accumulation of by-products due to overflow metabolism of glucose hampered efficient production of 2′-FL regardless of a host strain. To circumvent this problem, we used xylose, which is the second most abundant sugar in plant cell wall hydrolysates and is metabolized through oxidative metabolism, for the production of 2′-FL by engineered yeast. Specifically, we modified an engineered S. cerevisiae strain capable of assimilating xylose to produce 2′-FL from a mixture of xylose and lactose. First, a lactose transporter (Lac12) from Kluyveromyces lactis was introduced. Second, a heterologous 2′-FL biosynthetic pathway consisting of enzymes Gmd, WcaG, and WbgL from E. coli was introduced. Third, we adjusted expression levels of the heterologous genes to maximize 2′-FL production. The resulting engineered yeast produced 25.5 g/L of 2′-FL with a volumetric productivity of 0.35 g/L∙h in a fed-batch fermentation with lactose and xylose feeding to mitigate the glucose repression. Interestingly, the major location of produced 2′-FL by the engineered yeast can be changed using different culture media. While 72% of the produced 2′-FL was secreted when a complex medium was used, 82% of the produced 2′-FL remained inside the cells when a minimal medium was used. As yeast extract is already used as food and animal feed ingredients, 2′-FL enriched yeast extract can be produced cost-effectively using the 2′-FL-accumulating yeast cells.
keywords: Conversion;Genome Engineering
published: 2025-09-24
 
The aim of this study was to determine carbohydrate recovery from hemp for ethanol production and quantify biodiesel from TAG (triacylglycerol) present in hemp. The structural composition of five different hemp varieties (Seward County-SC, York County-YC, Loup County-LC, 19 m96136-19 m, and CBD Hemp-CBD) were analyzed. Concentration of glucan and xylan ranged between 32.63 to 44.52% and 10.62 to 15.48% respectively. The biomass was then pretreated with Liquid hot water followed by disk milling and then hydrolyzed enzymatically to yield monomeric sugars. High glucose (63-85%) and xylose (73-88%) recovery was achieved. Lipids were extracted from hemp using hexane and isopropanol and then transesterified to produce biodiesel. Approximately, 50% of total fatty acids in SC, LC, and CBD hemp were linoleic acid. Palmitic acid was present between 32 to 50% in varieties YC and 19 m. Highest TAG concentration at 25% of total lipids was observed in CBD hemp. The analysis on lipid composition and high sugar recovery demonstrates hemp as a potential bioenergy crop for ethanol and biodiesel coproduction.
keywords: Conversion;Feedstock Bioprocessing;Biomass Analytics;Feedstock Production
published: 2025-09-24
 
A novel process applying high solids loading in chemical-free pretreatment and enzymatic hydrolysis was developed to produce sugars from bioenergy sorghum. Hydrothermal pretreatment with 50% solids loading was performed in a pilot scale continuous reactor followed by disc refining. Sugars were extracted from the enzymatic hydrolysis at 10% to 50% solids content using fed-batch operations. Three surfactants (Tween 80, PEG 4000, and PEG 6000) were evaluated to increase sugar yields. Hydrolysis using 2% PEG 4000 had the highest sugar yields. Glucose concentrations of 105, 130, and 147 g/L were obtained from the reaction at 30%, 40%, and 50% solids content, respectively. The maximum sugar concentration of the hydrolysate, including glucose and xylose, obtained was 232 g/L. Additionally, the glucose recovery (73.14%) was increased compared to that of the batch reaction (52.74%) by using two-stage enzymatic hydrolysis combined with fed-batch operation at 50% w/v solids content.
keywords: Conversion;Feedstock Bioprocessing
published: 2025-08-29
 
This dateset contains data files necessary to replicate figures from "Idealized Particle-Resolved Large-Eddy Simulations to Evaluate the Impact of Emissions Spatial Heterogeneity on CCN Activity" submitted to Atmospheric Chemistry and Physics. Within the compressed folder data.zip are two subdirectories, "processed_data" and "spatial-het". The "processed_data" directory contains netCDF files which contain a subset of simulation output used in figure generation. The "spatial-het" subdirectory contains a .csv file with spatial heterogeneity values computed via an exact algorithm of the spatial heterogeneity metric described by Mohebalhojeh et al. 2025. The subdirectory "sh-patterns" contains .csv files for each emissions scenario. Each entry corresponds to a single grid cell over a domain of dimension 100x100 (lateral resolution of the computational domain employed in this paper). Within scripts.zip are python notebooks for generating figures. Additional python modules are included which contain helper functions for notebooks. Furthermore, a Fortran version of the spatial heterogeneity metric is included alongside shells scripts for creating a python environment in which the code can be compiled and convert into a Python module. Note that the create_env.sh and compile_nsh.sh scripts must be run prior to executing cells in notebooks to make use of the spatial heterogeneity subroutines.
keywords: Atmospheric chemistry; aerosols; Particle-resolved modeling; spatial heterogeneity
published: 2025-09-23
 
Mitochondria play a key role in energy production and metabolism, making them a promising target for metabolic engineering and disease treatment. However, despite the known influence of passenger proteins on localization efficiency, only a few protein-localization tags have been characterized for mitochondrial targeting. To address this limitation, we leverage a Variational Autoencoder to design novel mitochondrial targeting sequences. In silico analysis reveals that a high fraction of the generated peptides (90.14%) are functional and possess features important for mitochondrial targeting. We characterize artificial peptides in four eukaryotic organisms and, as a proof-of-concept, demonstrate their utility in increasing 3-hydroxypropionic acid titers through pathway compartmentalization and improving 5-aminolevulinate synthase delivery by 1.62-fold and 4.76-fold, respectively. Moreover, we employ latent space interpolation to shed light on the evolutionary origins of dual-targeting sequences. Overall, our work demonstrates the potential of generative artificial intelligence for both fundamental research and practical applications in mitochondrial biology.
keywords: AI/ML; metabolic engineering; modeling; software
published: 2025-09-22
 
The files in this dataset include the now-public domain full raw text and illustrations for the novel Gentlemen Prefer Blondes (GBP) by Anita Loos, and files comparing the two published versions of the novel in 1925, one in Harper's Bazar magazine and the other in book format by Boni & Liveright. These files comprise the underlying data for the scholarly digital edition of the novel edited by Daniel G. Tracy. The full citation for the publication, including the DOI link for those wishing access the text, is: Loos, Anita. Gentlemen Prefer Blondes. Edited by Daniel G. Tracy, Critical Edition. Windsor & Downs Press, 2025. https://doi.org/10.21900/wd.13
keywords: literature; textual collation; digital editions; American Literature
published: 2025-09-22
 
Annotation of untargeted high-resolution full-scan LC-MS metabolomics data remains challenging due to individual metabolites generating multiple LC-MS peaks arising from isotopes, adducts, and fragments. Adduct annotation is a particular challenge, as the same mass difference between peaks can arise from adduct formation, fragmentation, or different biological species. To address this, here we describe a buffer modification workflow (BMW) in which the same sample is run by LC-MS in both liquid chromatography solvent with 14NH3–acetate buffer and in solvent with the buffer modified with 15NH3–formate. Buffer switching results in characteristic mass and signal intensity changes for adduct peaks, facilitating their annotation. This relatively simple and convenient chromatography modification annotated yeast metabolomics data with similar effectiveness to growing the yeast in isotope-labeled media. Application to mouse liver data annotated both known metabolite and known adduct peaks with 95% accuracy. Overall, it identified 26% of ∼27 000 liver LC-MS features as putative metabolites, of which ∼2600 showed HMDB or KEGG database formula match. This workflow is well suited to biological samples that cannot be readily isotope labeled, including plants, mammalian tissues, and tumors.
keywords: Conversion;Metabolomics
published: 2025-09-22
 
We apply prospect theory to examining farmers’ economic incentives to divert a share of their land to bioenergy crops (miscanthus and switchgrass in this study). Numerical simulation is conducted for 1,919 rain‐fed U.S. counties to identify the impact of loss aversion on bioenergy crop adoption, and how this impact is influenced by biomass price, discount rate, credit constraint status, and policy instruments. Results show that ignoring farmer’s loss aversion causes overestimation of miscanthus production but underestimation of switchgrass production, particularly when farmers are credit constrained and have a high discount rate. We find that establishment cost subsidy induces more miscanthus production whereas subsidized energy crop insurance induces more switchgrass production. The efficacy of these two policy instruments, measured by biomass production increased by per dollar of government outlay, depends on the magnitude of farmers’ loss aversion and discount rate.
keywords: Sustainability;Economics;Modeling;Software
published: 2025-09-22
 
Environmental DNA metabarcoding data for fish communities at 50 sites in the Tennessee River watershed of northern Alabama, United States collected in summer 2018 used in the calculation of an Index of Biotic Integrity for biological monitoring. * New in this V2: In response to peer review at a journal and associated revised statistical analyses, we have added four variables to the file Curtis_etal_IBImetrics.csv and edited the Curtis_etal_readme.txt to explain these variables. The files Curtis_etal_FishDetections.csv and Curtis_etal_FishReadsbySite.csv remain unchanged. - 4 new variables in Curtis_etal_IBImetrics.csv are: fishIBI_noDELT, MaxHab, Stressor, and Distance.
keywords: Alabama; biological monitoring; environmental DNA; fish; Index of Biotic Integrity; water quality
published: 2025-09-19
 
Microbial cell factories have been extensively engineered to produce free fatty acids (FFAs) as key components of crucial nutrients, soaps, industrial chemicals, and fuels. However, our ability to control the composition of microbially synthesized FFAs is still limited, particularly, for producing medium‐chain fatty acids (MCFAs). This is mainly due to the lack of high‐throughput approaches for FFA analysis to engineer enzymes with desirable product specificity. Here we report a mass spectrometry (MS)‐based method for rapid profiling of MCFAs in Saccharomyces cerevisiae by using membrane lipids as a proxy. In particular, matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐ToF) MS was used to detect shorter acyl chain phosphatidylcholines from membrane lipids and a higher m/z peak ratio at 730 and 758 was used as an indication for improved MCFA production. This colony‐based method can be performed at a rate of ~2 s per sample, representing a substantial improvement over gas chromatography‐MS (typically >30 min per sample) as the gold standard method for FFA detection. To demonstrate the power of this method, we performed site‐saturation mutagenesis of the yeast fatty acid synthase and identified nine missense mutations that resulted in improved MCFA production relative to the wild‐type strain. Colony‐based MALDI‐ToF MS screening provides an effective approach for engineering microbial fatty acid compositions in a high‐throughput manner.
keywords: Conversion;Lipidomics;Metabolomics
published: 2025-09-08
 
This project evaluates the quality of retraction indexing metadata in Crossref. We investigated 208 DOIs that were indexed as retracted in Crossref in our April 2023 union list (Schneider et al., 2023), but were no longer indexed as retracted in the July 2024 union list (Salami et al., 2024), despite still being covered in the Crossref database. Therefore, we manually checked the current retraction status of these 208 DOIs on their publishers’ websites to ascertain their actual status.
keywords: Crossref; Data Quality; Retraction indexing; Retracted papers; Retraction notices; Retraction status; RISRS
published: 2025-09-04
 
This dataset contains the following to replicate figures from "TChem-atm (v2.0.0): Scalable Performance-Portable Multiphase Atmospheric Chemistry" submitted to Geophysical Model Development (GMD). It contains (1) the simulation inputs, outputs and analysis notebook for recreating the PartMC-CAMP and PartMC-TChem-atm comparison and (2) scripts, timing results and analysis tools for recreating the performance evaluation. Users can either inspect the raw output to verify the results of the manuscript or rerun simulations using the provided inputs. Additionally, modifiying the inputs allows for for further exploration of both model simulation and performance characteristics.
keywords: Atmospheric chemistry; Aerosols; Numerical solvers; Particle-resolved modeling; GPUs
published: 2025-09-08
 
This work evaluates the consistency and reliability of the title flag, i.e., retraction labeling that appears in the title of retracted publications, using 925 sampled retracted publications indexed in the Crossref only (Lee & Schneider, 2023), that are indexed in three other sources, Retraction Watch, Scopus, and Web of Science as of April 2023. We presume the retraction status of an item based on its title flag. For example, the flag "removal notice" is a retraction notice, and "retracted article" is a retracted paper. We compared the item's likely retraction status from the flag with the item's actual retraction status from the publisher's website.
keywords: Crossref; Data Quality; Title flag; Retraction flag; Retraction flag assessment; Retraction labeling; Retraction indexing; Retracted papers; Retraction notices; Retraction status; RISRS
published: 2025-09-08
 
Plant bioengineering is a time-consuming and labor-intensive process with no guarantee of achieving desired traits. Here, we present a fast, automated, scalable, high-throughput pipeline for plant bioengineering (FAST-PB) in maize (Zea mays) and Nicotiana benthamiana. FAST-PB enables genome editing and product characterization by integrating automated biofoundry engineering of callus and protoplast cells with single-cell matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We first demonstrated that FAST-PB could streamline Golden Gate cloning, with the capacity to construct 96 vectors in parallel. Using FAST-PB in protoplasts, we found that PEG2050 increased transfection efficiency by over 45%. For proof-of-concept, we established a reporter-gene-free method for CRISPR editing and phenotyping via mutation of high chlorophyll fluorescence 136. We show that diverse lipids were enhanced up to 6-fold using CRISPR activation of lipid controlling genes. In callus cells, an automated transformation platform was employed to regenerate plants with enhanced lipid traits through introducing multigene cassettes. Lastly, FAST-PB enabled high-throughput single-cell lipid profiling by integrating MALDI-MS with the biofoundry, protoplast, and callus cells, differentiating engineered and unengineered cells using single-cell lipidomics. These innovations massively increase the throughput of synthetic biology, genome editing, and metabolic engineering and change what is possible using single-cell metabolomics in plants.
keywords: AI/ML; genome engineering; metabolic engineering; phenotyping
published: 2025-09-18
 
The nonconventional yeast Issatchenkia orientalis can grow under highly acidic conditions and has been explored for production of various organic acids. However, its broader application is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. We recently constructed an episomal plasmid based on the autonomously replicating sequence (ARS) from Saccharomyces cerevisiae (ScARS) in I. orientalis and developed a CRISPR/Cas9 system for multiplexed gene deletions. Here we report three additional genetic tools including: (1) identification of a 0.8 kb centromere-like (CEN-L) sequence from the I. orientalis genome by using bioinformatics and functional screening; (2) discovery and characterization of a set of constitutive promoters and terminators under different culture conditions by using RNA-Seq analysis and a fluorescent reporter; and (3) development of a rapid and efficient in vivo DNA assembly method in I. orientalis, which exhibited ~100% fidelity when assembling a 7 kb-plasmid from seven DNA fragments ranging from 0.7 kb to 1.7 kb. As proof of concept, we used these genetic tools to rapidly construct a functional xylose utilization pathway in I. orientalis.
keywords: Conversion;Genome Engineering;Genomics;Transcriptomics
published: 2025-09-18
 
Sugar alcohols are commonly used as low-calorie sweeteners and can serve as potential building blocks for bio-based chemicals. Previous work has shown that the oleaginous yeast Rhodosporidium toruloides IFO0880 can natively produce arabitol from xylose at relatively high titers, suggesting that it may be a useful host for sugar alcohol production. In this work, we explored whether R. toruloides can produce additional sugar alcohols. Rhodosporidium toruloides is able to produce galactitol from galactose. During growth in nitrogen-rich medium, R. toruloides produced 3.2 ± 0.6 g/L, and 8.4 ± 0.8 g/L galactitol from 20 to 40 g/L galactose, respectively. In addition, R. toruloides was able to produce galactitol from galactose at reduced titers during growth in nitrogen-poor medium, which also induces lipid production. These results suggest that R. toruloides can potentially be used for the co-production of lipids and galactitol from galactose. We further characterized the mechanism for galactitol production, including identifying and biochemically characterizing the critical aldose reductase. Intracellular metabolite analysis was also performed to further understand galactose metabolism. Rhodosporidium toruloides has traditionally been used for the production of lipids and lipid-based chemicals. Our work demonstrates that R. toruloides can also produce galactitol, which can be used to produce polymers with applications in medicine and as a precursor for anti-cancer drugs. Collectively, our results further establish that R. toruloides can produce multiple value-added chemicals from a wide range of sugars.
keywords: Conversion;Genomics;Metabolomics
published: 2025-09-18
 
Productivity throughout the North American Great Plains grasslands is generally considered to be water limited, with the strength of this limitation increasing as precipitation decreases. We hypothesize that cumulative actual evapotranspiration water loss (AET) from April to July is the precipitation‐related variable most correlated to aboveground net primary production (ANPP) in the U.S. Great Plains (GP). We tested this by evaluating the relationship of ANPP to AET, precipitation, and plant transpiration (Tr). We used multi‐year ANPP data from five sites ranging from semiarid grasslands in Colorado and Wyoming to mesic grasslands in Nebraska and Kansas, mean annual NRCS ANPP, and satellite‐derived normalized difference vegetation index (NDVI) data. Results from the five sites showed that cumulative April‐to‐July AET, precipitation, and Tr were well correlated (R2: 0.54–0.70) to annual changes in ANPP for all but the wettest site. AET and Tr were better correlated to annual changes in ANPP compared to precipitation for the drier sites, and precipitation in August and September had little impact on productivity in drier sites. April‐to‐July cumulative precipitation was best correlated (R2 = 0.63) with interannual variability in ANPP in the most mesic site, while AET and Tr were poorly correlated with ANPP at this site. Cumulative growing season (May‐to‐September) NDVI (iNDVI) was strongly correlated with annual ANPP at the five sites (R2 = 0.90). Using iNDVI as a surrogate for ANPP, we found that county‐level cumulative April–July AET was more strongly correlated to ANPP than precipitation for more than 80% of the GP counties, with precipitation tending to perform better in the eastern more mesic portion of the GP. Including the ratio of AET to potential evapotranspiration (PET) improved the correlation of AET to both iNDVI and mean county‐level NRCS ANPP. Accounting for how different precipitation‐related variables control ANPP (AET in drier portion, precipitation in wetter portion) provides opportunity to develop spatially explicit forecasting of ANPP across the GP for enhancing decision‐making by land managers and use of grassland ANPP for biofuels.
keywords: Sustainability;Field Data;Modeling
published: 2025-09-18
 
Use of corn fractionation techniques in dry grind process increases the number of coproducts, enhances their quality and value, generates feedstock for cellulosic ethanol production and potentially increases profitability of the dry grind process. The aim of this study is to develop process simulation models for eight different wet and dry corn fractionation techniques recovering germ, pericarp fiber and/or endosperm fiber, and evaluate their techno-economic feasibility at the commercial scale. Ethanol yields for plants processing 1113.11 MT corn/day were 37.2 to 40 million gal for wet fractionation and 37.3 to 31.3 million gal for dry fractionation, compared to 40.2 million gal for conventional dry grind process. Capital costs were higher for wet fractionation processes ($92.85 to $97.38 million) in comparison to conventional ($83.95 million) and dry fractionation ($83.35 to $84.91 million) processes. Due to high value of coproducts, ethanol production costs in most fractionation processes ($1.29 to $1.35/gal) were lower than conventional ($1.36/gal) process. Internal rate of return for most of the wet (6.88 to 8.58%) and dry fractionation (6.45 to 7.04%) processes was higher than the conventional (6.39%) process. Wet fractionation process designed for germ and pericarp fiber recovery was most profitable among the processes.
keywords: Conversion;Feedstock Bioprocessing;Modeling
published: 2025-09-18
 
Respiration by soil bacteria and fungi is one of the largest fluxes of carbon (C) from the land surface. Although this flux is a direct product of microbial metabolism, controls over metabolism and their responses to global change are a major uncertainty in the global C cycle. Here, we explore an in silico approach to predict bacterial C-use efficiency (CUE) for over 200 species using genome-specific constraint-based metabolic modeling. We find that potential CUE averages 0.62 ± 0.17 with a range of 0.22 to 0.98 across taxa and phylogenetic structuring at the subphylum levels. Potential CUE is negatively correlated with genome size, while taxa with larger genomes are able to access a wider variety of C substrates. Incorporating the range of CUE values reported here into a next-generation model of soil biogeochemistry suggests that these differences in physiology across microbial taxa can feed back on soil-C cycling.
keywords: Sustainability;Metabolomics;Modeling
published: 2025-09-17
 
Microbial fermentation provides a sustainable method of producing valuable chemicals. Adding dynamic control to fermentations can significantly improve titers, but most systems rely on transcriptional controls of metabolic enzymes, leaving existing intracellular enzymes unregulated. This limits the ability of transcriptional controls to switch off metabolic pathways, especially when metabolic enzymes have long half-lives. We developed a two-layer transcriptional/post-translational control system for yeast fermentations. Specifically, the system uses blue light to transcriptionally activate the major pyruvate decarboxylase PDC1, required for cell growth and concomitant ethanol production. Switching to darkness transcriptionally inactivates PDC1 and instead activates the anti-Pdc1p nanobody, NbJRI, to act as a genetically encoded inhibitor of Pdc1p accumulated during the growth phase. This dual transcriptional/post-translational control improves the production of 2,3-BDO and citramalate by up to 100 and 92% compared to using transcriptional controls alone in dynamic two-phase fermentations. This study establishes the NbJRI nanobody as an effective genetically encoded inhibitor of Pdc1p that can enhance the production of pyruvate-derived chemicals.
keywords: metabolic engineering
published: 2025-09-17
 
Microbial production of chemicals may suffer from inadequate cofactor provision, a challenge further exacerbated in yeasts due to compartmentalized cofactor metabolism. Here, we perform cofactor engineering through the decompartmentalization of mitochondrial metabolism to improve succinic acid (SA) production in Issatchenkia orientalis. We localize the reducing equivalents of mitochondrial NADH to the cytosol through cytosolic expression of its pyruvate dehydrogenase (PDH) complex and couple a reductive tricarboxylic acid pathway with a glyoxylate shunt, partially bypassing an NADH-dependent malate dehydrogenase to conserve NADH. Cytosolic SA production reaches a titer of 104 g/L and a yield of 0.85 g/g glucose, surpassing the yield of 0.66 g/g glucose constrained by cytosolic NADH availability. Additionally, expressing cytosolic PDH, we expand our I. orientalis platform to enhance acetyl-CoA-derived citramalic acid and triacetic acid lactone production by 1.22- and 4.35-fold, respectively. Our work establishes I. orientalis as a versatile platform to produce markedly reduced and acetyl-CoA-derived chemicals.
keywords: bioproducts; metabolic engineering
published: 2025-09-17
 
Data was generated from juvenile paddlefish acclimated to one of three different temperatures (13.0°C, 17.5°C, or 22.0°C) for two weeks. After which, fish were subjected to one of two experiments, one being simulated angling in which physiological parameters (stress hormones, lactate, glucose, ions, and oxygen transport parameters were evaluated in plasma or whole blood), the other experiment consisted of critical thermal maxima tests. Data set includes physiological parameters, water quality temperatures, and morphometric data generated from these experiments and fish.
keywords: Sport fish, critical thermal maximum, exercise, recovery, conservation, fisheries, management
Research Data Service Illinois Data Bank
Access and Use Policies Web Privacy Notice Contact Us